3.157 \(\int \frac{\sin ^6(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=274 \[ -\frac{\left (8 a^2+3 a b-2 b^2\right ) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 b^3 f (a+b) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}}-\frac{(4 a+b) \sin (e+f x) \cos (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b^2 f (a+b)}+\frac{a (8 a-b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 b^3 f \sqrt{a+b \sin ^2(e+f x)}}+\frac{a \sin ^3(e+f x) \cos (e+f x)}{b f (a+b) \sqrt{a+b \sin ^2(e+f x)}} \]

[Out]

(a*Cos[e + f*x]*Sin[e + f*x]^3)/(b*(a + b)*f*Sqrt[a + b*Sin[e + f*x]^2]) - ((4*a + b)*Cos[e + f*x]*Sin[e + f*x
]*Sqrt[a + b*Sin[e + f*x]^2])/(3*b^2*(a + b)*f) - ((8*a^2 + 3*a*b - 2*b^2)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcS
in[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(3*b^3*(a + b)*f*Sqrt[1 + (b*Sin[e + f*x]^2
)/a]) + (a*(8*a - b)*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin
[e + f*x]^2)/a])/(3*b^3*f*Sqrt[a + b*Sin[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.31424, antiderivative size = 274, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {3188, 470, 582, 524, 426, 424, 421, 419} \[ -\frac{\left (8 a^2+3 a b-2 b^2\right ) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 b^3 f (a+b) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}}-\frac{(4 a+b) \sin (e+f x) \cos (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b^2 f (a+b)}+\frac{a (8 a-b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 b^3 f \sqrt{a+b \sin ^2(e+f x)}}+\frac{a \sin ^3(e+f x) \cos (e+f x)}{b f (a+b) \sqrt{a+b \sin ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^6/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(a*Cos[e + f*x]*Sin[e + f*x]^3)/(b*(a + b)*f*Sqrt[a + b*Sin[e + f*x]^2]) - ((4*a + b)*Cos[e + f*x]*Sin[e + f*x
]*Sqrt[a + b*Sin[e + f*x]^2])/(3*b^2*(a + b)*f) - ((8*a^2 + 3*a*b - 2*b^2)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcS
in[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(3*b^3*(a + b)*f*Sqrt[1 + (b*Sin[e + f*x]^2
)/a]) + (a*(8*a - b)*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin
[e + f*x]^2)/a])/(3*b^3*f*Sqrt[a + b*Sin[e + f*x]^2])

Rule 3188

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/Sqrt[1 - ff^2*x^2], x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !In
tegerQ[p]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(a*e^(2
*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c - a*d)*(p + 1)), x] + Dist[e^(2
*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) +
(a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 582

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[(f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q
+ 1) + 1)), x] - Dist[g^n/(b*d*(m + n*(p + q + 1) + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*
f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx &=\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{x^6}{\sqrt{1-x^2} \left (a+b x^2\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac{a \cos (e+f x) \sin ^3(e+f x)}{b (a+b) f \sqrt{a+b \sin ^2(e+f x)}}-\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{x^2 \left (3 a+(-4 a-b) x^2\right )}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{b (a+b) f}\\ &=\frac{a \cos (e+f x) \sin ^3(e+f x)}{b (a+b) f \sqrt{a+b \sin ^2(e+f x)}}-\frac{(4 a+b) \cos (e+f x) \sin (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b^2 (a+b) f}-\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{-a (4 a+b)+\left (8 a^2+3 a b-2 b^2\right ) x^2}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^2 (a+b) f}\\ &=\frac{a \cos (e+f x) \sin ^3(e+f x)}{b (a+b) f \sqrt{a+b \sin ^2(e+f x)}}-\frac{(4 a+b) \cos (e+f x) \sin (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b^2 (a+b) f}+\frac{\left (a (8 a-b) \sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^3 f}-\frac{\left (\left (8 a^2+3 a b-2 b^2\right ) \sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^3 (a+b) f}\\ &=\frac{a \cos (e+f x) \sin ^3(e+f x)}{b (a+b) f \sqrt{a+b \sin ^2(e+f x)}}-\frac{(4 a+b) \cos (e+f x) \sin (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b^2 (a+b) f}-\frac{\left (\left (8 a^2+3 a b-2 b^2\right ) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{b x^2}{a}}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^3 (a+b) f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}+\frac{\left (a (8 a-b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{3 b^3 f \sqrt{a+b \sin ^2(e+f x)}}\\ &=\frac{a \cos (e+f x) \sin ^3(e+f x)}{b (a+b) f \sqrt{a+b \sin ^2(e+f x)}}-\frac{(4 a+b) \cos (e+f x) \sin (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b^2 (a+b) f}-\frac{\left (8 a^2+3 a b-2 b^2\right ) \sqrt{\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 b^3 (a+b) f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}+\frac{a (8 a-b) \sqrt{\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}{3 b^3 f \sqrt{a+b \sin ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 1.26239, size = 197, normalized size = 0.72 \[ \frac{b \sin (2 (e+f x)) \left (-8 a^2+b (a+b) \cos (2 (e+f x))-3 a b-b^2\right )+2 \sqrt{2} a \left (8 a^2+7 a b-b^2\right ) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} F\left (e+f x\left |-\frac{b}{a}\right .\right )-2 \sqrt{2} a \left (8 a^2+3 a b-2 b^2\right ) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} E\left (e+f x\left |-\frac{b}{a}\right .\right )}{6 \sqrt{2} b^3 f (a+b) \sqrt{2 a-b \cos (2 (e+f x))+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[e + f*x]^6/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(-2*Sqrt[2]*a*(8*a^2 + 3*a*b - 2*b^2)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] + 2*Sq
rt[2]*a*(8*a^2 + 7*a*b - b^2)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] + b*(-8*a^2 -
3*a*b - b^2 + b*(a + b)*Cos[2*(e + f*x)])*Sin[2*(e + f*x)])/(6*Sqrt[2]*b^3*(a + b)*f*Sqrt[2*a + b - b*Cos[2*(e
 + f*x)]])

________________________________________________________________________________________

Maple [A]  time = 1.309, size = 405, normalized size = 1.5 \begin{align*}{\frac{1}{3\,{b}^{3} \left ( a+b \right ) \cos \left ( fx+e \right ) f} \left ( a{b}^{2} \left ( \sin \left ( fx+e \right ) \right ) ^{5}+{b}^{3} \left ( \sin \left ( fx+e \right ) \right ) ^{5}+8\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ){a}^{3}+7\,{a}^{2}\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) b-a\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ){b}^{2}-8\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ){a}^{3}-3\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ){a}^{2}b+2\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) a{b}^{2}+4\,{a}^{2}b \left ( \sin \left ( fx+e \right ) \right ) ^{3}- \left ( \sin \left ( fx+e \right ) \right ) ^{3}{b}^{3}-4\,\sin \left ( fx+e \right ){a}^{2}b-a{b}^{2}\sin \left ( fx+e \right ) \right ){\frac{1}{\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x)

[Out]

1/3*(a*b^2*sin(f*x+e)^5+b^3*sin(f*x+e)^5+8*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x
+e),(-1/a*b)^(1/2))*a^3+7*a^2*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^
(1/2))*b-a*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b^2-8*(cos(f
*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a^3-3*(cos(f*x+e)^2)^(1/2)*((
a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a^2*b+2*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^
2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a*b^2+4*a^2*b*sin(f*x+e)^3-sin(f*x+e)^3*b^3-4*sin(f*x+e)*a^2*
b-a*b^2*sin(f*x+e))/b^3/(a+b)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^6/(b*sin(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (\cos \left (f x + e\right )^{6} - 3 \, \cos \left (f x + e\right )^{4} + 3 \, \cos \left (f x + e\right )^{2} - 1\right )} \sqrt{-b \cos \left (f x + e\right )^{2} + a + b}}{b^{2} \cos \left (f x + e\right )^{4} - 2 \,{\left (a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral(-(cos(f*x + e)^6 - 3*cos(f*x + e)^4 + 3*cos(f*x + e)^2 - 1)*sqrt(-b*cos(f*x + e)^2 + a + b)/(b^2*cos(
f*x + e)^4 - 2*(a*b + b^2)*cos(f*x + e)^2 + a^2 + 2*a*b + b^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**6/(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)^6/(b*sin(f*x + e)^2 + a)^(3/2), x)